An inertially constructed forward–backward splitting algorithm in Hilbert spaces

نویسندگان

چکیده

Abstract In this paper, we develop an iterative algorithm whose architecture comprises a modified version of the forward–backward splitting and hybrid shrinking projection algorithm. We provide theoretical results concerning weak strong convergence proposed towards common solution fixed point problem associated to finite family demicontractive operators, split equilibrium monotone inclusion in Hilbert spaces. Moreover, compute numerical experiment show efficiency As consequence, our improve various existing current literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore,...

متن کامل

An intermixed algorithm for strict pseudo-contractions in Hilbert spaces

*Correspondence: [email protected] 2Department of Mathematics and the RINS, Gyeongsang National University, Jinju, 660-701, Korea Full list of author information is available at the end of the article Abstract An intermixed algorithm for two strict pseudo-contractions in Hilbert spaces have been presented. It is shown that the suggested algorithms converge strongly to the fixed points of two str...

متن کامل

Characterization of splitting for Fréchet-Hilbert spaces via interpolation

Based on the methods from interpolation theory we give a characterization of pairs (E,F ) of Fréchet-Hilbert spaces so that for each Fréchet-Hilbert space G each short exact sequence 0 −→ F −→ G −→ E −→ 0 splits. This characterization essentially depends on a key condition (S) of an interpolation nature. An equivalent description of (S) in terms of appropriate families of interpolation function...

متن کامل

FUSION FRAMES IN HILBERT SPACES

Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-021-03277-0